
1

OCR

Programming

Project

Name: Eusebiu Moldovan

Form: 13GJM

2

Contents
Analysis ... 4

Project Outliner ... 4

Stakeholders .. 5

Computational Methods ... 6

Interview ... 8

Research .. 10

Similar Games Analysis ... 12

Features of Solution .. 13

Initial concept of my character ... 14

Game States .. 15

Controls ... 15

Limitations to my solution ... 16

Requirements .. 16

Development Language/IDE ... 16

Stakeholder requirements ... 17

Design.. 18

Basic structure of the solution .. 18

Decomposition of the problem .. 19

Object-oriented design/programming .. 19

A justification of the approach taken .. 19

During the Gameplay U. I. Example .. 20

Default Game Controls .. 21

Structure of the Solution ... 22

Flowchart of solution .. 23

Test Data for Development ... 26

Development ... 28

SDLC Process ... 28

Test data for beta testing .. 29

Class Diagrams .. 31

Key Variables and Data Structures .. 32

Iterative Development... 35

Coding ... 35

Assets .. 36

Menu Development ... 39

Development Process .. 51

3

Evaluation ... 84

Testing ... 84

Testing against Features of Solution ... 91

Questionaire .. 93

Maintenance and Limitations ... 94

4

Analysis
Project Outliner
I will be making a platformer, 2d single-player adventure game in which you will be playing

as the villain of the story. This was inspired by games such as

Problem Identification

 At this point in time, a lot of games start to blend in with each other, especially on

mobile devices where the gaming market has merged. There is less innovation and thought

put into these games. The groups go as followed:

• The new boring arcade/indie style games, company Ketchapp is notorious when it

comes to that, bringing titles that are fun for a few weeks and then die off, get filled

with ads and such. There are no good updates, or a goal to drive the player, just

getting the highest score. There is not even a bit of storytelling.

• Then there are the “og” titles. Games that have been around and will be around for a

long time. Titles such as Candy Crush, Subway Surfers, Hay Day, 8 Ball Pool, all games

that have developed overtime and kept their popularity with updates and new

audiences.

Currently, the Google Store is filled with rip offs and rushed titles. Overcomplicated or too

simplistic and it takes away from the gaming experience and entertainment the user should

feel, even for a free game.

Most of these games require little processing power but considering it is a phone, some can

take up more than expected (PUBG Mobile). Due to the chips having integrated graphics,

the lack of a GPU means that some games that require more graphical processing power are

unable to run. This is a restrictions game developer have, but easier for me to work around

it. A lot of great games need very little processing power, e.g., Minecraft, League of Legends,

Terraria, Stardew Valley, etc. but they all make up for it in the gameplay. Keeping it simple is

what worked, even if these games started on PC.

There also aren’t many platformer games done in pixel art. The great decline in pixel/retro

art is partly due to the great ride in HD and Full HD 3D rendered games. Pixel art was born

due to device limitations, creating chunky pixels and limited colour pallet gave birth to this

genre. A lot of games and series came from it that kept a simplicity but not many still do.

The niche market and lack of investments dried out projects resulting into no new pixel art

games being put out, and forcing people to keep replaying older titles. The genre is versatile

and hated by no one. With a large community behind it, finding sprites, ideas and

animations for a game can be easy, but wanting something specific can prove difficult.

Problem Decomposition

There are a few issues that come with making a game that also has a story.

1. The story has to be designed and layed out before hand, as well as the characters stories,

goals, ambitions, motives etc.

5

2. Making animations, sound effects and using a program that is capable of using all these

things.

3. Making a menu system that also has settings for the usual things such as brightness,

sound etc.

4. Making a level system for the player to progress through

5. Making a levelling up system, maybe even different abilities and tools

6. Making the enemies or AI if needed

7. Verification to make sure that the user is fit to play, for example age confirmation, email,

etc.

Stakeholders
The client and demographic for this game would be mobile phone users/pc users. Because

the game will be so broad, and aimed at various age groups across multiple platforms, it is

important to make the game very intuitive and easy to pick up right away without any

issues, without making the game feel boring.

The gaming market is huge, but what I will be aiming at is casual gaming seeing as the game

has to be welcoming to newcomers but also fun for more experienced players, and also

easier to build.

In order to reach more people the game has to:

• Be fun to play as it is to watch

• Cheap but reasonably priced

• Welcoming and intuitive

• Meant for all ages

This should help the game get popularity among the clients but also viewers who just want

to see the game being played by someone else on YouTube.

One problem people might encounter are different errors due to running the game on

different computers. This is one of the reasons I have to use a game engine, in order to

ensure that the game can be made more efficiently.

6

Computational Methods
Abstraction and visualization

• Key objects: Main character, enemies, backgrounds, orbs/pickups, animations

• Will be needing sprites for all the characters, ‘buildings’, background etc. but

also fonts (most likely to be Amhurst SF) as well as icons for pickups, and

power-ups.

Thinking Abstractly

 My game needs essential features to make the gameplay lighter and give enough

mobility for the player to navigate the level in their own way. Some of the essential things

include:

• Pause feature, allowing the player to take breaks or just be able to stop the action

for a bit in order to go in the kitchen or there is something they quickly need to do.

From the pause menu they also have access to certain more features such as a

settings menu. This pause feature is a must to include.

• Character and Enemy Animations to bring fluidity to the game, which will be created

using sprites, making the game look more appealing and smoother.

• Score counter which will determine what award they get at the end of the level. This

is not an essential feature but there should be a driving reason why the player would

try to replay the level, and this could be, in order to increase their score.

• Health/Power up bars which are going to keep the player aware of the losing

possibility/ factor. This is making the game more intense, knowing you are not fully

invincible, and even though you have a powerful ability, you cannot use it 24/7.

Thinking Ahead

• Controls should be intuitive and easy to use. Usually the controls are similar to most

games and so they would be AWDS for moving the character, and mouse for any

strikes the character might make. Space/Shift for any abilities the character might

have and E, Q or F for any world/items the character might interact with. This will

make it easy for gamers to get used to as they are very common in most games but

also for new player as the keys are easy to reach and learn.

• Settings should also have a few options that the player has access to such as volume,

some display settings and so on. Controls could be one of them but it is not very

essential.

• Damage system should be balanced towards the player. The player should be way

stronger than the enemy but the enemy balances out in the numbers as there will be

multiple enemies the player should fight against. Player health is 100 and so is

enemy. Player cold do 20-80 damage per strike whereas enemy can do around 5-15.

• Scoring system is simple. Every enemy destroyed scores a certain amount of points,

and even more points if you don’t take much damage or you don’t die yourself in the

process.

7

Thinking Procedurally

Although some of these steps are less important and therefore might be sacrificed

depending on the time limit, but that is the target, the aim.

The task is split into multiple tasks:

• UI of the game including the menus, pause menu, settings, info etc. These are all the

menus the player can go in, each of those being one scene by themselves in unity.

• Levels of the game which are also going to be structured using sprites. The game will

not have many levels but just enough so that the player can explore.

• Characters including the player and enemies. These will use sprites in order to

animate movement but also they will have their own characteristics. The NPCs

should also have some sort of vision so that they actual attack the player when they

see it.

• Scores which will be calculated by how well the player has done during the level, and

will award the player one of three awards according to their score on that level.

• Saving the game is also key. The essential part is saving the score on the levels

already done so that progress is not lost. These can be stored in a separate file and

showed to the player when the game is opened.

These tasks will be coded separately and added to the backbone of the game which the

player will not get to see any of. This will allow the different scenes to interact making the

experience more fluid as they go from Main Menu to Play to Gameplay to Pause

Thinking Logically

• The Main Menu gives the user the option to go Play, Options, and Info. This means

that the game state will be looped on the Main Menu until a decision is made by the

player

• When player is hit of hits someone else, the health should decrease accordingly, and

score should increase as the player takes down more enemies, and decrease as the

player takes more damage.

• The game level will run until the finish is reached or until all the enemies are taken

down. The progress of that level will then be saved for when the player comes and

replays the level.

• Player can exit game from pause menu, so pause menu will loop until player makes a

decision of Resume, Settings or Exit.

Thinking Concurrently

• The enemy can detect the player but can also be killed before they do so, as there is

a delay allowing the player to take the first enemy without other enemies being

alerted. The game is very alive and responds to every move the player makes, as the

program runs different processes simultaneously which increases the immersiveness

and smoothness of the gaming experience.

8

Interview
The point of the interview is to get some primary data and information that can help me

develop the game in a way that people will enjoy playing it.

1. What is your favourite game genre/game

2. Would you consider yourself a gamer?

3. Are you into platformer titles such as Mario, Sonic, Celeste etc.?

4. What device do you play games on most of the time?

5. How much time a week do you spend playing games?

6. How do you purchase the games you play?

Henry

1. “It has to be first person shooters such as Ironsight, and if not that, then story telling

games”

2. “Yes, I would say so”

3. “I find platformers very repetitive and boring, however I cannot say no to Mario or

Celeste”

4. “I play on my PC for most of the time, or phone but rarely”

5. “I spend around 10 hours a week gaming, more or less depending on the week”

6. “I prefer to play free games, but if I want to buy a game, I do it online all the time.”

Analysis: We can see Henry as a potential customer. First person shooters can definitely be

chaotic and really fast paced sometimes so I can see him playing as a bad guy in my game.

We can also see that he plays a considerable amount of games, but we also don’t want to

waste his time so the game has to feel fast as well when it comes to storytelling, less than

12 hours of gameplay.

He is also a PC user, which is the biggest platform out there, and it is the platform we are

aiming for mainly, of course the game can be made for multiple platforms and bring it to

them later on.

Danika

1. “I only play games at a friend’s house or on my phone in the evenings”

2. “No, not really”

3. “Mostly puzzle games, with levels and such”

4. “On my phone or a console my friends might have”

5. “At maximum around 2-3 hours”

9

6. “I don’t buy games at all, not for me at least. I do gift them sometimes”

Analysis: Now she is less likely to be a potential client because she is not a very big gamer

and also because she probably doesn’t see PC’s as a gaming machine. However, she does

play games on her phone and even if she might not be interested at first, she might hear

from a friend about a game that she might want to play.

She also buys games for other people as gifts, so if she is still a potential customer, just not a

potential user.

 Andrea

1. “Loot and shoot type games. That or horror, but I can appreciate all games”

2. “Most definitely”

3. “I was for a long time but they all became repetitive so I stopped playing them”

4. “Everything from PS4 to Mobile Devices but I spend most of my time on PC”

5. “More than 25 hours, including streaming the games online on platforms such as

Twitch or YouTube”

6. “I don’t mind paying for games if the game is worth the money, but I rarely pre-order

a game”

Analysis: In this scenario we can see the potential client takes gaming less like a hobby and

more like a full-time job as she streams games and plays a lot. Having people like this play

your game is great as it increases the game’s popularity. She has access to all the different

platforms but PC is the one she prefers. So for her, the game has to be entertaining to play

but also to watch for her Streams.

Overall: We see that our audience can and will be very wide, which means the game has to

be entertaining to play and to watch so that it attracts more players and also viewers

making the game more popular in return. But the focus is being put on originality and

uniqueness for this game to be made for the PC platform to start with.

! It is also important to explain the games inner mechanics to the player for people like

Danika who have little experience playing games but also allow them to skip it if they want.

10

Research
There are a lot of games out there that fit the following criteria:

Casual game with mediocre graphics that also has some basic story telling aspect that drives

the game but can also be developed into an arcade, multiplayer etc. It has multiple levels,

maybe even bosses.

Mario would be a good example, but more recent title is Fancy Pants.

The stick man character is simple having smooth animations all around, and the story telling

aspect is simple but it drives the story, the same way Mario is driven by the kidnapping of

Princess Peach, for the last almost 40 years of the series, with small variations in the story,

but it keeps players coming for more, as the game mechanics and gameplay are fun, even if

the visuals weren’t that pleasing in the beginning of the genre.

This game has done well and created a good fan base, made multiple parts but ultimately

died off. Out of all the stickman games over the years, this one is one of the best. It was fun,

fast paced, and just a casual game with extremely fluid gameplay, even for a platformer.

Although this was a successful series, there have been more, less successful platformer

titles.

One of which is Super Neighbour World. The controls of the game are very stiff and it lacks

originality as it borrows aspects from different games such as Mario and Hello Neighbour

inspiration. It has no real drive for the player to keep going.

http://www.bing.com/images/search?view=detailV2&ccid=ax+AnBcf&id=33B248BCF19FCCA11536502364F42ECCEE7D41A2&thid=OIP.ax-AnBcfbuUlkkZrtiYnpAHaEK&mediaurl=https://image.winudf.com/v2/image/Y29tLmJlcm5vbGtvLnN1cGVybmVpZ2hib3Jfc2NyZWVuXzBfbjhtY2V0dmw/screen-0.jpg?fakeurl=1&type=.jpg&exph=1080&expw=1920&q=super+neighbour+world&simid=608007291462750075&ck=933611C569EBB015C7408F05A2185BA0&selectedIndex=1&adlt=strict&FORM=IRPRST
http://www.bing.com/images/search?view=detailV2&ccid=o0mG60zL&id=B7570E6FD93E2D233E5C9B39288A52610A046C16&thid=OIP.o0mG60zLjmX4ARet89gIrgHaEK&mediaurl=https://image.winudf.com/v2/image/Y29tLmJlcm5vbGtvLnN1cGVybmVpZ2hib3Jfc2NyZWVuXzFfdDYyd3U1eW0/screen-1.jpg?h=355&fakeurl=1&type=.jpg&exph=355&expw=631&q=super+neighbour+world&simid=608031665483483211&ck=4B9916C4282E820AEAE9D94853744352&selectedIndex=2&adlt=strict&FORM=IRPRST

11

But there have also been extremely innovative platformers, one for example being FEZ

which brings the 3d aspect to the game in order to solve puzzles. A platformer in order to

stand out, must have someunique aspect to it which separates it from any other

platformer/casual game. This can be the 3d/isometric aspect or just simple but smooth

animations for the characters. Having an aspect like this is a must as people will the

associate it with your game. This can be part of the story telling as it is a must to attract

players to it.

FEZ sold over 1 million copies by the end of 2013 and inspired games such as Monument

Valley, Crossy Road and Secrets of Rætikon.

For my game, this aspect might be, playing as the “bad guy” for once. There have been

games who have done this but not enough. Some of these games are considered classic and

this aspect of the gaming industry has been lost.

Games such as Destroying All Humans, Prototype, and GTA Series etc.

All these games are fun, partly due to gameplay, but partly due to the freedom the game

gives you. It move you towards being a villain which is something most games don’t do.

Keeping the audience hooked is the main goal, so choosing and developing a character in an

interesting way is crucial to the games dynamics and story line.

The main idea was having the main character being a version of the Grim Reaper, and have

him do missions on earth in which he has to bring people to the underworld in whatever

fashion he wants. Now we have some playing room around this idea. We can make the Grim

Reaper, a considered bad guy, and slowly develop him into a good character. We can also

prove his immense power and let the player have all the fun.

Of course around the same mechanic we can have a caveman for example, that was brought

into the future by mistake. This leads onto you destroying things for fun to try and find a

way home, although you are stuck 10,000 years into the future. This also gives you as the

player, an excuse for destroying bridges, cities, killing humans and so on. IT would be fun if

you could go back in time each level throughout history until you get back to you family and

friends.

FEZ – Puzzle soling 2d game with a twist. The levels are

based around a tower like structure/city. Although it is in a

2d perspective, you can go around the tower giving it

different perspectives of the same tower and requires you

to go up.

Due to its cool factor FEZ was praised by the gaming

community and was relatively successful. It made it unique

and special, it made it stand out from other 2d games.

https://en.wikipedia.org/wiki/Secrets_of_R%C3%A6tikon
http://www.bing.com/images/search?view=detailV2&ccid=JlkXc3Fv&id=2456E14DA61AC45F9EC6DAC3EFB9746A40B9A19E&thid=OIP.JlkXc3FvMjCr6EzP5q_5HAHaEo&mediaurl=http://www.nag.co.za/wp-content/uploads/2012/05/Fez-Image-4.jpg&exph=800&expw=1280&q=fez+game&simid=607994247765688866&ck=C878B03A69083C76F8D80F7769E44373&selectedIndex=4&adlt=strict&FORM=IRPRST

12

Both of these ideas are similar when it comes to game play. But looking at upgradability,

being the grim reaper can also bring an arcade mode to the game and also can be way more

fun and unique.

Similar Games Analysis
Celeste (The Platformer): This little pixelated adventure 2d game has been very praised by

many players. It is a fun and challenging platformer which is part of the inspiration for the

art style I will be using, which is pixel art. This game is simple, yet unique, with some very

cool features. Celeste looks amazing and feels great playing it with smooth gameplay and

harsh penalties. It is definitely an example for what a platformer should look like and play

like. Celeste is also played on almost every platform but it doesn’t lose its core attribute of

being a simple easy to pick up and play game. Some new comers to gaming in general might

be confused as to what the game wants from them but learning as the game progresses is

crucial, which is what drives them to keep playing.

The main menu is simple and to the point. It has the necessary options, credits, exit and the

main play button or “climb”. This simplicity is seen through the rest of the game and is a

source of inspiration when it comes to the design of the menu and some parts of the game.

GTA V (The villain narrative): This game is one of the best ever with a story mode that is still

talked about. Even earlier in the series, playing as a normal pedestrian was never an option.

Being chaotic, unpredictable and a real villain type character was the best choice. Rockstar

have done that very well with the character Trevor. A psychotic 40 something man that

wants nothing but revenge and some “good ol’ fun”. He is weird and ridiculous but at the

same time, he feels real, which is what made him such a popular character. When it comes

to bad guys, Trevor is a perfect example, not just for games but even for movies and TV

series. Showcasing his craziness early, and keeps adding to the unnecessary violence and

paybacks makes Trevor a fun character. Being able to replicate that with a twist is the aim

for my game.

In order to make a believable villain, like Trevor, the character has to prove itself. Maybe put

an event at the beginning of the game or a bit after the first chapter that explains us the

villain’s perspective and why they are the way they are. This is what I will use in the story

telling, a progressive character development to build a relationship between the player and

the character.

13

Features of Solution
Feature Explanation/Limitations

Pixel art graphics This is the type of game I am aiming for as I see this as being a
gap in the market that I want to explore further, and the type of
game that people don’t have enough of currently.

Relevant sound effects The sound of the game should reflect the atmosphere of the
game. It should be a somewhat light game but still have
edgy/darker colours and so the sound should be able to reflect
that.

Clear instructions and
help

Some players might be somewhat new to games so the game
should help them with information on how to play it. The game
should also be very intuitive for more experienced players.

The game is single
player

This genre is getting somewhat of an overlook nowadays, and
so making the game single player is not only more fit for my skill
set, but also makes the game more unique and original
compared to other games.

The menus are easy to
navigate

The game has a certain feeling to it and so the menus should
make the whole experience much more immersive. The menus
are not a focus, unlike loot n shoot type games. Players do not
want to spend much time in menus.

There is only one
possible character to
play with

This is because the game focuses on gameplay, although being
fairly arcade oriented, there is one base character that I will
implement due to avoiding any added complesity.

Relevant background
and UI elements

This should make the game feel more polished and relevant, as
it fits better with the rest of the game elements.

An end screen after
player finishes level or
dies

This should tell the playyer how well or how badly they have
played the game. It should have information about their
performace and reward them accordingly.

14

Initial concept of my character

The concept I will go for is a platformer, pixelated 2d adventure game where you play as the

Grim Reaper on Earth. The aim is to find your target human and take them to the

underworld. This allows you to play as the bad guy around different levels and do whatever

in order to get to your destination.

The character development will just be the grim reaper travelling around the earth,

becoming more human than ever before, chasing his ‘target’.

The character would be brought to life using animation and sprites in order to simulate

movement during the game play, allowing the player to control this characters movement

which is a big part of the development as well as animating the enemies, making sprites for

the menu system as well as background and tile sets.

Art Inspiration

The Grim Reaper Inspiration Pixel art version 1 Pixel art version 2

Backgrounds

Menu background is this dark pixelated image

on a Japanese town. It fits the setting of the

game having a dark style and yet it is in a more

HD side of pixel art having very realistic shapes

and figures.

The game will not look like this but this feel like

a good way to welcome the player to the game.

This background could change over the course of

development depending on my needs. But this

would be the main idea, a dark forest or a ruined

town type setting for the majority of the gameplay.

15

Game States
Menu: This is the first part players get to interact with and see. The player has a few options

they can chose from. They include “PLAY”, which leads them to the actual game, “OPTIONS”

for the game itself with some things they can change within the game, “INFO” which gives

them some information about controls used in the game and how the game works, and the

last one being “QUIT”, which exits the game completely.

Paused: This is when the player chooses to press “ESC” to pause the game as they will not

be at their desk to play it for a bit. The game should freeze completely, as it only unfreezes

when the player comes back to the game.

Playing: This game state is when the player actually plays the game. They should have some

UI at the corners of the screens to give them an idea of what is going such as a health bar, or

a powerup bar or even hints/directions.

Over: This is the end screen the player sees when they ave finished the level or died trying

to finish it. It should have some data showing the player how well they did during that level

nad what they can improve on things such as time taken to finish, damage taken, damage

dealt, enemies killed, lives used, overall score or maybe even a medal ranking from bronze

to gold/stars to signify how well the player did.

Controls
Controls for main character:

“A” moves towards the left, “D” moves towards the right

“W” makes the character jumpor go up, “S” makes the character crouch or go down

“SHIFT” makes the character use their special ability which is the dash abuility.

“SPACE BAR” activates the chargable power the player has which does more damage to

enemies.

“E” is the button used to interact with world objects and orbs.

“Left Mouse Button” is used to stike or slash with the scythe.

“Right Mouse Button” is used to aim your scythe and prepare for a throw

The mouse movement allows the player to slash or throw in any direction they so wish.

“ESC” is what leads them to the pause game state and can be activated anytime during the

gameplay.

16

Limitations to my solution
The biggest limitation is my own skill. Having little skill when it comes to game development,

this will be a challenge for me and a way to learn more about the topic. But this also mean

that there are things which are harder for me to implement which might lead to a lesser

game than the one I had hopes for.

Another limitation is time. Having a time limit might mean I have to sacrifice parts of the

game for others, which might make the game feel rushed and have gaps within it.

Requirements
Hardware

• A computer capable of running the game at a good quality and frame rate, that

• Input system, preferably a keyboard and mouse – this can be changed to a controller

but that will have to be implemented in the settings section.`

Software

• Windows operating system at 64-bit – This supports almost any game and also

supports unity

• For the pixel art I will use a program called Sprite

• Any extra things required by unity before it can start your game

• I will be making the game in Unity 2020.1.5

Development Language/IDE
The language I will have to use is C# as that is the most common language used in Unity for

game development. An alternative would’ve been from the C family, C++ but that would be

when using Unreal Engine to develop the game, but Unity is better overall for 2D game

development.

Unity doesn’t have a code editor but it is closely linked with visual studio, which is the code

editor I will use to code and Unity to sharpen the game and make it look like one.

17

Stakeholder requirements

Design

Requirements Explanation
A simple main menu that is intuitive and easy to use for new
comers but also has enough settings for more experienced
players

This will allow both low and high skilled players to feel right
at home

The design scheme reflects the story and the main character
being the Grim Reaper.

This give the game some personality to be associated with,
e.g. Minecraft has a 3d square as a logo that resembles dirt
and grass.

The whole theme should be dark along with the writing in
the menus, backgrounds, sounds, etc.

This goes along nicely with the meaning and feeling of the
whole game, which is to be expected.

Functionality

Requirement Explanation

The usual game setting that can be tampered with so that
every user can personalize their experience to a certain
extent. Includes controls, graphics, gameplay etc.

This will allow higher skilled users to personalize their
experience the way they want it, but it is also good for
people with more special screen and so on to run the game
optimally.

The game should also have a pause menu that allows you to
change some of the in game settings and maybe even a tip
section for those that are lost and don’t know what to do

This will allow the users to personalize the game experience
but also stop their progress for a little break if they so wish.

The ability to change key binds would be a good thing to add This can mean that users can customize their experience
even more and could allow room for connecting a controller
later on.

A save button, although the game will save automatically,
having the option to do so manually can prove to be
beneficial and some people prefer it.

This will allow users to ensure that their progress is saved
after they are done playing for the day.

Having a cheat menu or just cheats to add some more fun to
the game.

After the user has finished the game they can replay it using
cheats which might just make it more fun and hilarious.

Hardware and Software

Requirement Explanation

Standard computer peripherals: Computer with a keyboard
mouse and monitor.

The user needs basic peripherals in order to play the game
and to progress through it.

Preferably headphones or speakers for the sound effects,
although it shouldn’t affect the user performance a lot.

This is not a must but it is recommended in order to get the
full game experience.

Minimum Computer Specs: (enough to run the software) The computer needs to be able to run the game. Although
not a lot of image processing is needed, some still is.

Windows, Mac or Linux operating systems In order to run the program and to store the data, you need
an operating system.

18

Design
Basic structure of the solution
The game will be comprised of a main menu, from which the layer can access the game,

settings, information about the game as well as quit the game or access saved files.

User interface design (Menu)

User interface design (Game)

Main Window

Start New

Continue

Options

Credits

Info

Entities

*Information or a picture design of the

main character or the character itself*

This free space can be used for a lot of

various things. It can be a place where

art work for the game can be

displayed, a map of how it was

developed

It can also be tailored to the players

liking, having their character on there

or maybe the bosses they have fought

against and won.

This will add a bit of polish to the game

itself.

Examples of pathways a user can take before they start the game, allowing

them to personalize their experience/learn more about the game.

This is where the main

gameplay will take place,

including the combat and

character actions. It must not

be restricted by the other

gameplay U.I. so that the

player can see clearly what is

going on

There is also an objective at

the bottom of the screen so

that the player knows where

to go and what to do

There is a combo counter for

the player which gives him

more damage every x5 which

can encourage the player to

increase it and use it to their

advantage.

The health. Power up and special ability bar are all in the same place making it easier for the player to just glance and know everything

about their chargeable. On the top of the screen it also shows the new location you are in which just adds to the atmosphere of the game.

Enemies will also have their own health bar and the damage taken by each enemy.

19

Decomposition of the problem
In order to meet my goals, the game will be developed in two stages. The first stage is

building a character, hit box, movement, collision mechanics etc. Also making the enemies,

and making the player be able to interact with the enemies. Also building some sort of

mediocre A.I. so that the enemies are not just clueless. After all these assets are built, they

will be used in different levels.

Of course, these problems can be broken even further, which is why I used object-oriented

design to do so.

Object-oriented design/programming
Assets Description Mechanics
Player This is the character that the player will control, and help to

progress through the story.
Hit box, Movement, Inter body interactions
Dialogue, Health bar, Power bar

Enemy These are characters whose job is to stop the player from
progressing.

Hit box, Movement, Inter body interactions, Some
dialogue/sounds, Health bars for bosses

Level Floor/
Objects

This is the space the player gets to explore in order to progress. Collision box, design changes

Weapon/
Scythe

The weapon the player will use to damage enemies. Away from character wmechanics, retractable.

NPC’s There will be characters along the story line that the player can
interact with

Dialogue and interactions/tasks

Orbs Collectibles the player can interact with that give him health, or
fill his powers.

Interaction with player.

Backgrounds Each level has to have a background, but also far objects move
from right to left slower than the things that are closer to you.

It reacts to player movement accordingly, meaning
foreground moves faster and background moves
slower.

A justification of the approach taken
The problem will be approached in this way because it is the easier way to do so using

almost any game making and also allows me to reuse all the assets from level to level, or

even different game modes.

It will also enable me to reach my goals easier, those being:

• A high and constant frame rate even for a not so equipped computer achieved

through efficient processing

• Good graphics, with smooth animations for the characters

• Sounds to create a more immersive experience for the player

• Level design to create a constant progression through the story

• Develop it in an easy way to add new things later on

• Easier to understand and breakdown the game later if needed

The approach is not definitive, as it can change as development takes place, and so iterative

development can change the course of the games development.

20

During the Gameplay U. I. Example

• As we can see from a gameplay screenshot, the game is very combat focused, so

some things such as a combo counter and timer may not be needed, but they are

useful to point out.

• Of course, the player has a health bar, which will have to be implemented in my

game. This keeps the player on their toes and so the game can punish the player for

making mistakes, and drive the player to become better at the game.

• The powerup bar is also something that can and should be implemented as it adds

an extra layer to the game, allowing the player to learn the game mechanics and se

the powerups for his/her advantage.

• Objectives are something that need to be made clear, either through the story or

just pointing them out, as otherwise, it leaves the player clueless, which is

sometimes an issue with a lot of game.

• Total score is something I can implement as Score per level. Score will be linked to

how much damage you took, and how much damage you dealt. Score can also be

affected by the time it took you to finish a level/tasks

The use of those functionality features are the same old basics from game to game, which is

a fairly good thing. You can expect players to have some knowledge of what is going on in

the game.

It is intuitive for a 2d game, even with no prompts, to go towards the right side of the

screen. It is normal for the controls to be AWDS or arrows, or for the jump to be something

like space.

This is one of the reasons many games spend very little time on introduction of the

mechanics and controls, because they are very universal. Because games use this universal

language, games that deviate from it are harder for people to get into or to enjoy playing.

People enjoy seeing new takes on the same design of U.I. which also makes the gameplay

more intuitive for most users but also easy to get used to for new gamers.

Player health bar

Power up bar

Combo counter

Total Score

Objectives

Timer

Main Gameplay

http://www.bing.com/images/search?view=detailV2&ccid=zMTyIYtm&id=5304AD7A83CA70E783F80482D2ED2742DC28900A&thid=OIP.zMTyIYtmzqUv7CQvBdP3rgHaEK&mediaurl=https://i.ytimg.com/vi/ak3_zMPiZVQ/maxresdefault.jpg&exph=720&expw=1280&q=aztez+gameplay&simid=608053896250917023&ck=C8DC5B04D61CF6431F6810F689B20E9D&selectedIndex=2&adlt=strict&FORM=IRPRST

21

Default Game Controls
AWSD (Blue) – Controls

are used for moving the

character on screen.

These buttons are used

in most pc games as

they are well

positioned for the user

to use their left hand

while the right hand is

free to use the mouse. These controls can move the character left, up, down or right

respectively.

E/Left Shift (Red) – These buttons can be used for the special ability/dash ability for the

character. They are close to the main movement control key so they are easy to reach and

use without much movement in the left hand.

F (Yellow) – This button will be used for any world/item interaction such as orb collecting

etc. this is also an easy button to reach and use but due to preferences, it might be the most

frequent button to change in the settings by the user due to some confusion games created

between E and F.

Esc (Purple) – This button will be used to pause the game or go back to the previous window

in the menus. This button is in the corner of the keyboard which is good so that you don’

Left Mouse Button (Blue) – This is the button used to

‘strike’. The user would use their right hand to use these

two button as the mouse controls the combat of the

game. The strike would do damage to the enemy and the

player can hit repeatedly for more hits. This button is

also used as a main button for combat in other games to

control things such as ‘shoot’.

Right Mouse Button (Red) – Holding down this button gives you the option to aim your

scythe, as the character gets ready for a throw.

Movement of Mouse (Green) – This allows you to aim at what enemies you want to swing

towards while pressing left mouse button. It also allows you to aim the scythe throw when

holding down on the right mouse button.

Right Mouse Button (Red) + Left Mouse Button (Blue) – Once aimed and with the right

mouse button being held, pressing the left mouse button will throw the axe towards the

direction aimed at. If it hits any enemies, it will do damage to them.

This is a way to include ranged combat in to the game, adding another layer to the combat

making the game more fun allowing players to play in their own way.

22

Structure of the Solution

2d platformer

Entities/Objects

Enemies

Movement

Speed

A.I.

Attack Player

Range of vision

See player when
close

Damage dealt

Do damage to
player

Total health

Being killed when
health is zero

Player

Movement
controls

Movement speed

Flipping character

Scythe

Throw

Swing

Damage dealt

Hit box

Rectangle shape
around the player

Takes damage if
hit

Health bar

Visualy decreases

Can reheal from
orbs

Powerup

Time to flll

Damage dealt

Orb interaction

Sounds

Walking

Swing

Throw

Damage taken

Bosses

Health bar

Long timed
attacks

Range attacks

slow movement

Orbs

Random
generated

Can heal or fill
ability

NPC's

Dialogue

Backgrounds

Moves when
player moves

Split foreground
and background

Different speeds

Level Object

Floors

Doors

Block/Crates etc.

Menu

Options

Controls

A to go left
D to go right

W to jump
S to crouch

Q for special
ability

Left click to
charge throw

Right click to
throw/swing

Space for special
ability

E for interactions

Graphics

Aspect Ratio Resolution

Frame rate

Info

Start New

Level Selector

Play Game

Move Player Move Enemy

Display Score
Collision

detection

Track player
health

Check player alive

Reach checkpoint End game

Save progress Next Level

This structure is very detailed, and some of the

features specified here might not make it in the

final version due to their complexity that they

add to the game.

23

Flowchart of solution

Menu Flowchart

The menu is fairly simple as I will not focus too much on it, but it should give the user some

control over their experience and should also be simple enough for someone new to games

to be able to navigate easily with little to no problems.

The menu’s look will be determined by a simple background as well as button animations

that gives the game a polished look and feel.

24

Character movement
When the level starts the character spawns in stationary and will remain

stationary until the user takes control of the character.

The controls will change the position of the character accordingly.

A – makes the character move to the left for as long as it is pressed with a

certain fixed speed

S – makes the character go down or crouch in certain areas

D – moves the character to the right of the screen for as long as it is pressed

with a certain fixed speed

Left Shift – Special dash ability that the player can use but has a cool down

so keeping it pressed won’t do anything.

The position of the character is then updated every single frame, taking into

account things such as gravity so that when pressing W the character jumps

and doesn’t fly.

Flowchart is simplified because unity helps when developing

Character Combat

This flowchart takes into consideration the

distance between the main character and

enemies so when swinging the scythe, it does

damage accordingly.

This also gives the user a reason to stay close

to the enemy, but it comes at the costs of

them doing damage to you.

The only advantage the user has is that they

can do way more damage per second as the

swings are quick and swift whereas the

enemies are slower, especially the bosses.

Also, the scythe can do damage when thrown

and retracted, 25 every time it passes an

enemy.

The ultimate ability takes a long time to

recharge so you may use it maybe once a

level, but does loads of damage to enemies.

25

Enemy A.I. Structure

The A.I. for the enemies is kept simple. When the enemy sees

the player, they confirm that it is in fact the player, so they

might take about 0.3 seconds to decide and then start attacking

the player.

They also alert other enemies to rush towards the player and

stop him from progressing through to the next level.

The enemy has a smaller range of vision than the player, which

allows the player to see the enemy before the enemy sees the

player which allows for stealth kills and planning.

As soon as the player comes within that range of vision, the

enemy will then decide on the player and then attack whilst

alerting the other enemies.

The enemy also needs to know if the player is close enough to

them for them to start striking. If the player is close enough,

than the enemy does 15 damage points per second from each

enemy.

Enemy will also die if their health is bellow or equal to zero.

26

Test Data for Development
Identification and justification of data to be used during development is tested for

functionality before moving onto the next stage. Each of the next few characteristics of the

game play an important role in making the game whole and immersive, as well as polished

and glitch free for the players experience.

Movement

What is being tested Data Type

Player movement Valid

Movement Speed Valid

Dash Ability Valid

Enemies move when they see you and they don’t when you are far. Valid/Invalid

You can move even when ultimate is activated. Valid

You cannot move through any world object Invalid

You should be able to move around or even dash past certain enemies. Valid

Controls for movement should be as specified Valid

Combat

What is being tested Data Input

Swing scythe Valid

Aim to throw Valid

Throw Scythe Valid

Retract Scythe Valid

Enemies damage player Valid

Special ability Valid

Camera shake Valid

Sound effects Valid

Combo perks Valid

Damage doesn’t happen if there is no contact between the characters. Invalid

Cannot use power when it’s only 99.9% Borderline

The dash ability cannot be used when the cool down happens Invalid

Controls for combat should be as specified Valid

Interaction

What is being tested Data Input

Collecting an orb Valid

Soul hunger

Talking to random strangers along the way Press Q

Enemies

What is being tested Data Input

27

Enemies run towards you when they see you Valid

Enemies should take 100 damage maximum in order to die Valid/Borderline

Enemies can alert others when you are near Valid

Enemies can do damage to you only when you are close Valid

Menu

What is being tested Data Input

Can you start a new game by clicking play Valid

Can you continue a game from where you left off Valid

Accessing the setting menu Valid

Changing some of the settings and does it actually make a difference Valid

Does the quit button actually work by quitting the game. Valid

Can the game be pause mid-gameplay by pressing “esc”? Valid

Is the game frozen while pause menu is up? Valid

Can you exit back to main menu from pause menu? Valid

Levels

What is being tested Data Input
Is the level re-playable? Valid

Does the level show the score you got when finished? Valid

Is the level re-spawning you in the right place? Valid

The level should stay consistent even if changes are made in the
settings

Valid

!Any glitches that the game might have during development and testing, e.g. falling through

the ground or one hit deaths or even glitches that are an advantage to the player will be

noted in the development or testing stage.

28

Development

SDLC Process

Waterfall Methodology

The waterfall methodology is very structured,

following a sequential design process to the

development of

the system. It is also a very easy model to manage, and

it would work for the small size of my project, as well as a

faster delivery of the project.

But using this methodology will make it harder to go back to previous

stages which I might have to do in order to polish the game to the level

that I want it to be.

Agile methodology

The agile methodology is a practice that helps continuous iteration of development and

testing, as these activities are concurrent, unlike waterfall model. Using this methodology

should lead to a more polished end product all around.

The disadvantage is that the methodology

is harder to use for smaller projects as it

doesn’t use all of its advantages, and the

project could also go off the track.

Rapid Application Development (RAD)

In this case the model would help with its flexibility and adaptability to changes. This would

help a lot with my project as it would allow making changes to be easier. Due to prototyping

in nature, there is a possibility of lesser defect and glitches.

It is harder to use it for smaller projects. And it is not suitable when technical risk is high as it

requires very skilled people when using it, which is why I will not use it as my skills are not as

high as the skills required to use RAD efficiently.

Conclusion

I will be using a combination between the two methodologies, waterfall and agile. Waterfall

is used as a basic structure for the project but I will have to make my game incrementally

and iterate it over time in order to get the end product that I want. These iterations are too

small within the game in order to call the methodology agile but it does take aspects from

both methodologies, but the main one used is waterfall.

29

Test data for beta testing

Movement

What is being tested Data input Expected output

Player movement AWSD The character moves in the expected direction as
soon as a key is pressed along with showing the
specific animations attached to that “movement”

Movement Speed N/A The speed at which the player moves is acceptable,
fast but not unfair. It still makes the player think
strategically.

Dash Ability Press Left-Shift The character dashes forwards for about 0.2 seconds
in which time it cannot take any damage and covers a
reasonable distance. Enemies lose sight of you for a
split second.

Enemies move when they
see you

“Get close to enemy” Enemy runs towards you looking for an attack

You can move even when
ultimate is activated.

Press Space The player can move slowly when ultimate is
activated so that they can go towards the enemy.

Combat

What is being tested Data Input Expected Output

Swing scythe Left Mouse Button Does 50-100 damage to enemy, throws them back

Aim to throw Right Mouse Button Aims the scythe and gets ready to throw. Animation

Throw Scythe Left Mouse Button (with Left
Mouse Button being held)

Throws the scythe doing 25-75 ranged damage.

Retract Scythe Click Right Mouse Button Retracts Scythe to hands

Enemies damage
player

N/A Depending on the enemy, they can do 20-50 dps on
player. Health bar decreases.

Special ability Press Space Does continuous damage for 15s at 150 dps for close
enemies and 95dps for further enemies. With animation
and decrease ability bar and increase health bar.

Camera shake The action and amount of
combat

Camera shakes during combat with every hit given and
taken.

Sound effects N/A There are sound effects with the swings, damage and
special ability that all play when the player presses the
certain keys.

Combo perks Left Mouse Button After a certain combo multiplier, you can do a finishing
move and do more damage to enemies

30

Interaction

What is being tested Data Input Expected Output

Collecting an orb Press and hold Q The orb takes 1.5 seconds to absorb and fills either
health of power up bar. Also makes an animation and
sound effect.

Soul hunger Press and hold Q The character can collect souls from the creatures he
has fought, but only the ones with souls. Also has an
animation and sound effect.

Talking to random strangers
along the way

Press Q A dialogue between the character and the stranger
will tell some of the story and a goal for the future.

Enemies

What is being tested Data Input Expected Output

Enemies run towards you Player is in their vision
range

Enemies alert each other and run towards you
engaging combat.

Enemies should take 100
damage

Do damage to enemy After 100 damage, the enemy dies so that the player
can then progress.

Enemies can alert others
when you are near

Get near an enemy without
sneaking

Other enemies will come to attack you.

Enemies can do damage to
you

Get close to enemy The enemy should do 15 damage per close strike,
which they can do every 1.5 seconds. Some enemies
can do ranged attacks but not all. They have to be
close to the player to do damage.

Menu

What is being tested Data Input Expected Output

Can you start a new game Left Mouse Button The game would occupy a new profile where it would
save progression in the future and the game starts

Can you continue a game N/A The game should continue from a checkpoint close to
where you left off or at the beginning of the level.
The game should also save automatically when you
finish a level.

Accessing the setting menu N/A The game will open the setting menu to the user and
allow the user to make whatever changes they want
to.

Changing some of the
settings

N/A The game will then allow the user to change some of
the settings in the game

31

Class Diagrams

32

Key Variables and Data Structures

Main Menu

Method Stored label Data Type Actual meaning Justification

Game State Main Menu NA The game has opened
and the player is in the
main menu

The game state will allow the player to
select where they want to go from there.

Variable Decision Boolean The player decides
what button they want
to click and the
program reacts
accordingly.

It allows the player to access the actual
game, settings, etc.

Game State Playing NA The game can then go
to a number of
different game states

By doing this the player can have more
freedom within the menus as well as the
actual game.

Gameplay

Method Stored label Data Type Actual meaning Justification

Variable Enemy
Vision

Integer This determines the
vision of the enemy and
if they can see you or not

This allows the player to sneak and it
also doesn’t give the enemy too much of
an ability as they could see you across
the level.

Variable Enemy
Speed

Integer This is the maximum
speed the enemy can
travel at

This is lower than the players so that the
enemy won’t be too hard to fight.

Variable Player
Speed

Integer This is the maximum
speed the player can
travel at

This will restrict the player from
speeding across the map

Variable Dash Speed,
Duration
and Cool
down

Integer The duration and speed
of the dash ability along
with it’s cool down

This will keep the player from abusing
the ability to their advantage but also
help them when they need it. IT will also
make sure the ability cools down before
it is used again.

Variable Player
Health

Integer This keeps track of the
health of the player

This will change over time and will be
compared constantly until it is bellow or
equal to 0.

Variable Enemy
Health

Integer This keeps track of the
health of every enemy

This will change over time and will be
compared constantly until it is bellow or
equal to 0.

Variable Damage
dealt

Integer Keeps track of the
damage dealt by the
player to opposing
enemies

This will then be part of the score at the
end of the level.

Variable Enemies
Killed

Integer Counts how many
enemies the player took
out

This will again be part of the score at the
end of the level.

33

Variable Wave
Number

Integer This keeps count of how
many waves of enemies
the player took out.

This will increase with every 2-3
enemies, and will count towards the high
score at the end.

Procedure Swing NA This will do damage to
any close enemies
depending on how far
they are from the player

This is the basic combat move the player
will have against the waves of enemies.

Procedure Total Score Integer The total score will be
calculated as the player
progresses through the
level

This will make it easier as the score can
be constantly displayed to the player
while they play allowing them to
compare with previous runs.

Procedure Throw NA Allows the player to
throw their Scythe by
determining where the
player is aiming the
object.

This will then check what the scythe is
hitting. If it is an enemy then it should do
damage to them accordingly.

Variable Power-up Integer According to their score,
their power up might’ve
been charged and so it
holds that as a
percentage.

This will be used to check if the power up
is ready to be used in which case the
power up is at 100% or above.

Procedure Power up NA This actually activated
the power up. Recharges
the players dash ability
and health to 100%, as
well as doing damage to
nearby enemies.

This ability will be activated when the
player presses “space bar”.

Variable Paused Boolean This pauses the game
when true.

Allows the player to pause the game
taking them to a different game state.

34

Game States

Method Stored label Data Type Actual meaning Justification

Game State Paused NA The gameplay is paused
at this stage

The game hold the code for the game
while paused until game is resumed.

Procedure Resumed NA The game is then
resumed by the player

This will put the player back to where they
left off.

Game State Settings NA The game goes to
settings in this stage

Allows the player to customize some of
the game play and experience.

Procedure Back NA Allows the player to go
back to the main menu

This allows the player to make a different
decision such as starting the actual game.

35

Iterative Development
The development process of my game follows an iterative process where after the

prototype is made, the client will give comments and advice on where the direction the

game should be taken in, and will then follow these directions to meet certain requirements

with the next prototype, and so on until the client is happy with the final product.

In reality this process would repeat until the budget limit is met or the client is happy

enough with the product but in this case, the project is too small to make use of any real

budget, and unlikely to reach a publishable standard.

However, the game will go through those iterations throughout the development cycle, as

the game will become more and more polished as it gets closer to the final product, and the

reason why it might deviate from the original idea and plan of what the game was supposed

to be. This can be due to a personal creative decision or it could make the whole project go

along much easier and faster if that is what the timeline and deadline will dictate, without

changing the original idea.

Coding
As I will be using unity to make my game, a lot of the things that I must do exclude coding.

These are things such as level, creation or just layering the right things on screen for the

player.

Unity makes use of a lot of assets and objects to make games, a lot of which don’t have to

be coded in, unlike the functionality of all those buttons, controls, etc.

The more specific game components will have to be made up of scripts which is where th3e

coding aspect comes into play. This allows me to link different game objects to make them

interact, for example the interactions between the player and the enemy’s sword.

36

Assets

Game Level

In order to create the game level itself, I will be using this village tile set I found on the unity

store. It has a lot of objects made in pixel art, and it looks very detailed, but also fits with the

rest of the game.

These sprites were taken from the unity store, and will be used to create my level/levels.

The sprites will also take up some memory space and render time for the user as they are

quite detailed, but this is taken into account.

The level that is to be loaded is relatively small in scale, it is not a 2D open world. Also, not

all the sprites will be used within the level as some of them are useless to me, and therefore

will be taken out of the sprite package. This shrinks the game file size but also makes the

rendering a bit quicker when starting up the level.

Menu Assets

• Background: The background should be

simple and still represent the game as well as

fit the pixel art style throughout. I have

decided on this background to be in the

game. It has a good resolution, and works as

a good canvas for the buttons and the rest of

the menus to be laid on top of.

Because it has mostly a dark pallet of dominant

colours, the font and buttons should be easy to spot

and see for players, meaning it would work well as a

main menu background.

• Font Style: The font used throughout the game should

definitely be pixelated. This would go with the whole art

style and idea of the game. Although the font is not

definitive yet, it should look very arcade like, and should

fit the game nicely along with the background as well as

button designs.

http://www.bing.com/images/search?view=detailV2&ccid=2PjbV8aE&id=1AC4F6519DC7DA5292FC1B7F12D9F42430A152D2&thid=OIP.2PjbV8aE_1LBhiYf-uuZVwHaFV&mediaurl=https://opengameart.org/sites/default/files/boxy_bold_font_5.png&exph=640&expw=888&q=pixel+art+font+asset&simid=608013373598664335&ck=128FA90A79BA496CAE7D1558DCE0F6BF&selectedIndex=13&adlt=strict&FORM=IRPRST

37

• Button Designs: The buttons should be transparent, and should darken when

hovered over them. This gives a much more polished look to the whole

game, and contrasts the pixel style for the font, giving it some contrast

making it stand out.

Characters

There are two main character types within the game at the moment. These being the Main

Character controlled by the player and the Enemy which is an NPC, non-playable.

• Main Character: -The player, which has its own

functionality and set of abilities, as well as its own

sprite sheet with animations and such. The

character is mean to represent the grim reaper but

this art related direction might change due to the

time needed to animate the character fully in pixel

art before putting it into the game and coding its

functionality and interactions.

The actual sprite for this character might change if

animating the character will take too long and it will be too

difficult to do in the time frame, or even implement in

unity.

In order to animate the character, I might have to use bone structures in order to make it

easier to animate. This will automatically change the look of my sprite, and maybe even

spoil the 2D look of the character, as the squares themselves will not align perfectly

anymore.

• Enemy (NPC): - This is the character the player cannot control or

have any access to. This character is constantly trying to attack the

player. The fact that there are multiple of the same enemy can

make it challenging. This sprite might also get change in the future

depending on the difficulty of animating this character. Coding the

functionality for this character might be easier, but it is the

character that is more prone to glitches or mistakes, as there are

often more of the same enemy.

This is just one of the enemy types. The original idea was to include

more than one, which can only be possible by using other free sprites

and assets I might find online, rather than animating more than 5

enemy types by myself which could prove time consuming.

In the real world, both of these characters, along with the object package, tile set and

main menu assets would be made specifically for the client and to the client’s needs and

wants, but because it can be very time consuming and difficult for one person, I might

38

have to use other sprites and assets I find online, even if they don’t exactly match my

style or the original idea 100%.

Gameplay Background

This background is just a canvas o which

the tile map/world will be laid over.

This is not a definitive decision as the

resolution of the image itself may be a

problem when imported to unity.

It might result in a blurry background as

the image would be zoomed noticeably.

There isn’t a real way to fix this issue and

so a different image may be used.

! A lot of the decisions are not decisive when to comes to the sprites. Using already made

sprites from online stores might make more sense in the future depending on how long

making the sprite sheets might take and on what the client’s requirements are.

39

Menu Development

Main Menu

Here we use a canvas along with the main camera to display

the main menu to the user. This is composed of the canvas

which contains the background along with the play, options,

info and quit buttons.

In order to save rendering inefficiently, I will build the options

menu within the main menu. This will make the game run

much more efficiently at start up.

Style

The four buttons have certain components each, along with the text in each

button. Each buttons functionality is done by the C# script Main Menu as well

as aesthetic and colour selection as well as onClick() events.

40

Play Button and Text

Here we have the components of the two pieces that make the Play button, the button itslf an the

text within it. The rest of the buttons use a similar layout in order to make them look similar.

The use of a font to replace the normal text proved to be tricky as using it gives an unknown error.

Until that will get fixed, I will use the default TextMeshPro font.

The Play button will then load the next scene called Level 1 where the game is played and the rest of

the assets are used and where the game will actually run. The scene is separate from this scene. The

only men accessible from that scene will be the pause menu.

41

Options Button and Text

The options button again has its functionality set in the Main Menu C# script but also

clicking it leads to a new menu for the settings. To make it more efficient, there is no new

scene to be loaded and a scene to be unloaded as the menus can be tagged or untagged

within the same scene.

The options menu will then have its functionality in a separate C# script that is just for the

System settings that the player can change and have some control over.

To get back to the main menu from this menu, you will utilize the back button.

42

Info Button and Text

The info button will lead to another menu where information about the game will be displayed to

the user in order to help them with playing the game, and giving them some hints on the game an

how to play it.

The only way to get back to the main menu is to utilise the back button which then leads back to the

main menu.

The On Click events activate or deactivate the menus in order to not have to load multiple scenes

and use the same scene in order to make the game more efficient.

43

Quit Button and Text

Options button and menu make the interactable screen UI element that when clicked leads to the

options menu. This is done as the main menu is deactivated and the options menu is activated.

To go back to the menu, you need to click the back button. The functionality of these buttons will be

given from the MainMenu C# script.

The interactable part of this button is given by its components, given by the TextMeshPro button

settings.

44

MainMenu C# Script

using System.Collections;

using UnityEngine;

using UnityEngine.SceneManagement;

public class MainMenu : MonoBehaviour {

 public void PlayGame(){

 SceneManager.LoadScene("Level 1");

 }

 public void QuitGame(){

 Debug.Log("QUIT!");

 Application.Quit();

 }

}

45

Options Menu

The options menu is more complicated. It has a multitude of UI elements. This

includes drop down, sliders and toggles.

In order to make all of those functional, a separate C# Script is made that can

change the System settings themselves, without having the player to acces the

game files.

The options menu is accessed from the main menu. It is in the same scene as the

main menu so in order for them to not overlap, the main menu is untagged and

therefore inactive while the options menu is tagged and therefore active,

allowing the player to make changes to the menu without affecting the main

menu or the info menu.

The options menu also allows the player pick the best settings for their system,

allowing the game to be expanded t different platforms much easier in the

future, as the foundation to make sure the users get the best experience is

there.

The game objects within this hierarchy are all the UI elements that together

make the options menu.

While having so many elements can be confusing and inefficient, they all go into

bigger parent object which can then be tagged or untagged keeping the whole

hierarchy cleaner and easier to look at.

The functionality behind all the UI elements is referenced from the canvas.

46

Master Volume Slider

The master volume slider controls the

volume of all the sound in the game as

the name of it might suggest.

The slider holds a value that can be

between -80 and 0, from left to right.

Moving the slider reduces the volume of

the in-game sounds.

This is done by reducing the volume of

the System MainMixer which is also

where all the sound queues will be

played from within the game.

This then automatically

controls the sound the

player receives.

Linking this and the

volume slider is done

through the OptionMenu

C# Script that is

referenced from the

Canvas.

As the slider has a value

of -26, the MainMixer

reduces the volume of

the sound by 26 dB.

The player can also control the sound

through their system volume on their

computer but this is a good addition as it

gives more flexibility.

The sprite of the volume slider is the default look of the TextMeshPro Package of assets. Looking for

the right set of UI sprites can be time consuming so I decided not to give it too much attention.

47

Screen Resolution

The screen resolution is a drop-down UI element

that also has a default sprite that comes from

the TextMeshPro package.
The options in the drop-down menu are dictated by

the C# script OptionMenu. The options are unique to

the system itself as thy are not made by me, but by

the script. The different options are put in a list and

showed to the player. The player then selects an

index which can then change the resolution of the

game.

This bit of the code was copied as coding this is a bit

above my skill level. It takes a lot of knowledge about

the unity system itself and how it can be used to

make such a setting or even compare different

resolutions to each other.

The drop-down selection can have loads of option

depending on the system the user is playing the

game on.

This selection is made up of a background, slider,

label, arrow and a template that only activates when

the arrow is clicked.

This way of sorting the settings menu is much more

efficient and easier to access. It is also very intuitive

as it is a very commonly used feature in websites and

other applications as well as game menus and

settings.

One of the places it is commonly used is picking your

date of birth when making a new account for certain

websites

48

Graphics Quality
To change the graphics quality, I use the same

drop-down UI element as the Screen Resolution

but the functionality is different coding wise.

To change the actual rendering quality of the

game in unity, you can do that by going to the

project settings > quality and change from the

given options which can be from Very Low to

Very High.

For the sake of simplicity, I just kept three

options, those being Low, Medium and High.

This works by taking the selected index in the

drop-down menu, and then goes on to select the

same index of the quality in the System Settings.

The effect it has on the game is somewhat

insignificant but it does change some of the

settings just by switching these pre-sets.

*The graphic used for the drop-down selection

option.

49

Full Screen Toggle
The full screen is there as an extra way the user can customise their

experience. IT allows the player to toggle full screen on making the

game more immersive but also allows them to toggle this off in order

to still have quick access to the rest of their PC. The toggle stores a

Boolean value as it can either be on or off.

When switched on or off, it accesses the Screen settings and changes

the Full screen to on or off. This is done like the previous settings, by

using built in Unity functionality.

Using toggles can be much more efficient in terms of the space taken

by the UI, but it gets inefficient when there are many possible

toggles. Doing this for the resolution would occupy a lot of space on

screen

Other settings may be added later but these are some very basic

settings each user expects to have access to.

Providing these to the user is a must, as was stated in the Analysis

section.

Back Button

The back button is the same button used in the Info and uses

the same functionality of main menu buttons. This uses the

onClick event system, where by when this button is clicked, the

option menu tag is off, and instead, the main menu tag gets

turned on.

This is done by referencing the objects in the onclick events and

tagging the object that should be displayed, so main menu, and

leaving the other one, the info menu blank so that when the

back button is clicked, this menu goes away.

! The colour of the button and it’s highlighted colour as well as

the selected colour remain constant across both all the back

buttons and the buttons themselves as it makes the menu look

more polished.

50

Character Redo
I had to change the sprite for the main character in order to have animations within my game and

make the character more lifelike. To do that, I used an already made sprite sheet that has more than

enough animation options including running, roll, jump, fall, slide, block, death, damage, attack that

has 3 variants etc.

The sprite is used is called hero Knight and it will be used to represent the main character controlled

by the user.

Because the sprite sheet is already made along with the animations, all that

is left is implementing these into the game.

But until then, I have to make the world first, or at least a platform on which

the character can sit on.

This would most likely also change the look of the enemy character so that

the main character and all the enemies are within the same style of pixel art. But this would happen

further in the development process due to the decision being dependent on what is available to use

for free.

51

Development Process
World Tiles

To improve my work flow by using the original sprite intended to make the game with, I also decided

to use a tile pallet and just “paint” the world on the grid.

This allowed me to make more with less as it were. I made a small map that has constraints at each

end of the map. This makes sure the player cannot go past it or fall out of the map.

There are no world objects in the map but

that will come later.

The map also uses the first background

and repeats it.

In order to make sure the player can actually make contact with the tile map; I added a component

called Box collider or Edge collider that stops objects affected by gravity such as the player from

falling through the tile set map.

These are represented by the green lines

as a structure that represents the actual

tiles on the screen as a collective and not

just very square by itself.

The tile map box collider has no script

interacting with it as it is just as a simple shape

that ensure that the rest of the physics within

the other game objects such as the player can

function without any problems.

It works as a foundation for the rest of the

game world.

This world will be improved later on but this is

the bare minimal requirement in order to

advance with the rest of the game

development

Things such as grass, other objects such as

trees, wood logs, and others will be added but

later in the development stage as they do not

have a big role to play other than for the

aesthetic of the game.

The Colliders are made of two. The box collider

for the floor and the edge collider for the map

limits as well as the higher platforms on the

side.

52

Character Development

Making the objects Ceiling Check and Ground Check will be useful later.

For now, we have to give Player a sprite to represent the player on the screen as

well as giving that sprite actual physics and colliders so that the character can

interact with the world around it.

The settings n the components are simple

so far.

Rigid body 2D is what gives the character

the physics within the game.

Collision detection is continuous which is

important in order to ensure Rigid body

always updates itself.

Also, rotation is frozen in the Z axis. It is a

2d game so we wouldn’t want the

character to rotate in that axis.

Other than that, the settings are fairly

default.

The capsule collider is the shape around

the sprite, just like the tile map box

collider, that ensures that the player can

interact with the floor, restrictions and

other world objects.

The shape is a capsule, similar to an oval.

Using this shape instead of a square gives

more flexibility. If the player goes up a

ramp. Having a curved shape would help

rather than having hard edges.

The slippery material property is also

important.

Slippery

It is just a material asset that has 0 friction and 0 bounciness. This has affect in the vertical direction.

This means that when jumping on a wall, the player wouldn’t just be stuck up there until they stop

going towards that wall. The player should be sliding back down which is what this 2D material

ensures that happens.

Otherwise, jumping on a wall and keep driving towards that wall would result in the player hanging

in the air levitating. In order to prevent that, I made every all “slippery” for the player.

53

Character Movement

In order to make the character move, we

need two scripts. One that takes care of the

state that the character game object is in.

Things such as flipping the sprite depending

on which direction the characterise facing

but as well as giving us control over things

such as Jump force, crouching, air control

and more of the physics behind the

character.

These are unique to 2D character. This piece

of code has been recycled from an already

existing product and implemented into my

game as it is a more complicated script to

develop. Then, making the parameters to

look realistic for example the jumping force

and so on.

CharacterController2D.cs (C# Script)

using UnityEngine;

using UnityEngine.Events;

public class CharacterController2D : MonoBehaviour{

 [SerializeField] private float m_JumpForce = 400f; // Amount of force added when the

player jumps.

 [Range(0, 1)] [SerializeField] private float m_CrouchSpeed = .36f; // Amount of maxSpeed

applied to crouching movement. 1 = 100%

 [Range(0, .3f)] [SerializeField] private float m_MovementSmoothing = .05f; // How much to smooth

out the movement

 [SerializeField] private bool m_AirControl = false; // Whether or not a player can steer

while jumping;

 [SerializeField] private LayerMask m_WhatIsGround; // A mask determining what is

ground to the character

 [SerializeField] private Transform m_GroundCheck; // A position marking where to

check if the player is grounded.

 [SerializeField] private Transform m_CeilingCheck; // A position marking where to check

for ceilings

 [SerializeField] private Collider2D m_CrouchDisableCollider; // A collider that will be disabled

when crouching

54

 const float k_GroundedRadius = .2f; // Radius of the overlap circle to determine if grounded

 private bool m_Grounded; // Whether or not the player is grounded.

 const float k_CeilingRadius = .2f; // Radius of the overlap circle to determine if the player can stand up

 private Rigidbody2D m_Rigidbody2D;

 private bool m_FacingRight = true; // For determining which way the player is currently facing.

 private Vector3 m_Velocity = Vector3.zero;

 [Header("Events")]

 [Space]

 public UnityEvent OnLandEvent;

 [System.Serializable]

 public class BoolEvent : UnityEvent<bool> { }

 public BoolEvent OnCrouchEvent;

 private bool m_wasCrouching = false;

 private void Awake(){

 m_Rigidbody2D = GetComponent<Rigidbody2D>();

 if (OnLandEvent == null)

 OnLandEvent = new UnityEvent();

 if (OnCrouchEvent == null)

 OnCrouchEvent = new BoolEvent();

 }

 private void FixedUpdate(){

 bool wasGrounded = m_Grounded;

 m_Grounded = false;

 Collider2D[] colliders = Physics2D.OverlapCircleAll(m_GroundCheck.position,

k_GroundedRadius, m_WhatIsGround);

 for (int i = 0; i < colliders.Length; i++){

 if (colliders[i].gameObject != gameObject){

 m_Grounded = true;

 if (!wasGrounded)

 OnLandEvent.Invoke();

 }

55

 }

 }

 public void Move(float move, bool crouch, bool jump){

 if (!crouch){

 if (Physics2D.OverlapCircle(m_CeilingCheck.position, k_CeilingRadius,

m_WhatIsGround)){

 crouch = true;

 }

 }

 if (m_Grounded || m_AirControl){

 if (crouch){

 if (!m_wasCrouching){

 m_wasCrouching = true;

 OnCrouchEvent.Invoke(true);

 }

 move *= m_CrouchSpeed;

 if (m_CrouchDisableCollider != null)

 m_CrouchDisableCollider.enabled = false;

 }

 else{

 if (m_CrouchDisableCollider != null)

 m_CrouchDisableCollider.enabled = true;

 if (m_wasCrouching){

 m_wasCrouching = false;

 OnCrouchEvent.Invoke(false);

 }

 }

 Vector3 targetVelocity = new Vector2(move * 10f, m_Rigidbody2D.velocity.y);

 m_Rigidbody2D.velocity = Vector3.SmoothDamp(m_Rigidbody2D.velocity,

targetVelocity, ref m_Velocity, m_MovementSmoothing);

 if (move > 0 && !m_FacingRight){

 // ... flip the player.

 Flip();

56

 }

 else if (move < 0 && m_FacingRight){

 Flip();

 }

 }

 if (m_Grounded && jump){

 m_Grounded = false;

 m_Rigidbody2D.AddForce(new Vector2(0f, m_JumpForce));

 }

 }

 private void Flip(){

 m_FacingRight = !m_FacingRight;

 Vector3 theScale = transform.localScale;

 theScale.x *= -1;

 transform.localScale = theScale;

 //this is the flip function

 }

}

57

The other script deals with the actual player

movement and input management as well as

the running speed of the player and references

the animator of the character and the

controller.

This script is much simpler as all it does is move the player horizontally or vertically depending on

what button was pressed, and checks these inputs for every single frame

This script not only physically moves the sprite but also makes use of the animator, and changes the

values of “Speed” as well as “Jump”. These values will then be used as conditions to animate the

character.

Input manager was also changed in order to meet the controls that were determined in the design

phase. By default, Unity gave left and right arrow keys as well as “a” and “d” for horizontal

movement and space bar for jump.

Space bar was then replaced by the button “w” to meet these control requirements. The controls

will also be included in the Info menu later in the project.

PlayerMovement.cs (C# Script)

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PlayerMovement : MonoBehaviour{

 public CharacterController2D controller;

 public Animator animator;

 public float runSpeed = 40f;

 float horizontalMove = 0f;

 bool jump = false;

 void Start(){

 }

 // Update is called once per frame

 void Update(){

58

 horizontalMove = Input.GetAxisRaw("Horizontal") * runSpeed;

 animator.SetFloat("Speed", Mathf.Abs(horizontalMove));

 if (Input.GetButtonDown("Jump")){

 jump = true;

 animator.SetBool("isJumping", true);

 }

 }

 public void OnLanding(){

 animator.SetBool("isJumping", false);

 }

 void FixedUpdate(){

 //Moving Character

 controller.Move(horizontalMove * Time.fixedDeltaTime, false, jump);

 //Moves character the same amount regardless of the amount of times the function is ran.

 jump = false;

 }

}

59

Controls Breakdown
The controls used within the game can be changed from the unity Project Settings. I had to change

them to meet the specified.

The controls now meet the desired requirement that was stated in the design. SO far the movement,

happens only with “a”, “d”, “w” keys for left right and jump respectively.

The rest of the keys for things such as the attack types as well as special abilities will be added in

later.

60

Animation of Character

The basic animation involves the Idle sprite set of

around 8 frames. The conditions that allow the

animations to switch from one to another.

The parameters are Speed that is an integer, and

isJumping that is Boolean. If isJumping is true then

the animation switches to the jump animation, and

then to the fall animation after the exit time is over.

The parameter is changed by the PlayerMovement

Script when it detects the specific input.

Entry > Knight_Idle
This transition is default. It will happen all the time as long as the

other animations are not playing. This replaces the static

sprite/image the character started off as.

Knight_Idle <> HeroKnight_Run

This transition can happen both ways and takes into account the

parameter of speed. If speed is above 0.01 then the animation plays until

speed will be below the given value.

Any State > HeroKnight_Jump

HeroKnight_Jump > HeroKnight_Fall
This transition has no condition, it just has a time exit as the animation will play after

the jump animation happens once.

This transition plays as long as the player is falling, without playing the jumping

animation again.

HeroKnight_Fall > Knight_Idle
This transition will happen if speed is below the given value, meaning that the player is static. And

there for the player should idle on the ground.

HeroKnight_Fall > HeroKnight_Idle
This condition happens when speed is more than 0.01, and therefore the player should

be running and so that is the animation that plays.

61

Log in System
This log in system would allow the user to register using a vali email and a password they have

create. The details would then be saved using the Firebase system, allowing the user to connect and

register as long as they have an internet connection. This will then allow them to log in the next time

they play the game as their details have been saved online.

It also allows me to track and view app usage and log in performance using the Firebase console

which can also be accessed by me using my google account and internet connection.

Not keeping the log in files on the persons computer can be a positive, as they can log in to their

account and play the game from any device if they have an internet connection.

Here we can see the log in/register menu, which is the first menu that the player is greeted with. We

can also see that it has the same style and background as the other menus.

The first important feature that was added to is replacing the characters in

the password fields with asterisks in order to keep the password hidden

from people that may be looking at the screen. An extremely common

practice among almost all apps and webpages.

Although the data sent to the firebase are actual characters and the actual

input the person has entered.

62

Using Firebase
Firebase is a platform developed and owned by Google and is widely used for developing web

applications as well as supporting games. Unity has now implemented new features such as the new

package manager to encourage people to use firebase which is imported as a package.

It allows me specifically, to add more functionality to my game’s log in system, as well as making the

game easier to scale up in the future. It keeps the users data safe, and also gives me some

monitoring options when it comes to the game.

Seeing as firebase is new, not only for me but also refreshed by unity, it adds a lot of complex scripts

to the game. This package seems to be the best option for when making a smaller sized game in

which case the idea of maintaining a server that keeps the users data is not a viable solution.

Trying to bring the package into unity to try and use it in my game showed some difficulties. Firstly,

in order to do so, it is best to use a newer version of unity, later than 2020.1.17f, whereas I was using

a slightly older version, 2020.1.16f.

After installing the new version with almost no issues, adding the Firebase packages was much easier

than before as using Packet Manager was much easier.

Another error came to surface, which some people struggle with. As far as the people on forums can

tell, it is not due to a specific reason. When adding a script to a game object, the Script Component

of the game object gives and error, not allowing you to link other game objects to that script that

you need to make the game, although it can likely be due to the file name and class name not

matching, an error that seems common with Unity’s C# history.

The fix seems to be either deleting the meta files of the scripts and reimporting them to unity, given

you have no compile errors, or take the scripts to a folder out of the project, delete the ones within

the project folder, built the project, reimported all the scripts from the backup folder one by one.

Due to the complexity of the firebase package in Unity, the scripts have not been coded by me, but I

have the responsibility to try and implement them in my game as far as unity allows me to.

63

Firebase Scripts

AuthUIManager

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using TMPro;

public class AuthUIManager : MonoBehaviour{

 public static AuthUIManager instance;

 [Header("References")]

 [SerializeField]

 private GameObject checkingForAccountUI;

 [SerializeField]

 private GameObject loginUI;

 [SerializeField]

 private Gameobject registerUI;

 [SerializeField]

 private GameObject verifyEmailUI;

 [SerializeField]

 private TMP_Text varifyEmailText;

 private void Awake()

 {

 if (instance == null){

 instance = this;

 }

 else if (instance != this){

 Destroy(gameObject);

 }

 }

64

 private void ClearUI(){

 loginUI.SetActive(false);

 registerUI.SetActive(false);

 FirebaseManager.instance.ClearOutputs();

 }

 public void LoginScreen(){

 ClearUI();

 loginUI.SetActive(true);

 }

 public void RegisterScreen(){

 ClearUI();

 registerUI.SetActive(true);

 }

}

Firebase Manager

using System.Collections;

using Firebase;

using Firebase.Auth;

using TMPro;

using UnityEngine;

public class FirebaseManager : MonoBehaviour{

 public static FirebaseManager instance;

 [Header("Firebase")]

 public FirebaseAuth auth;

 public FirebaseUser user;

 [Space(5f)]

65

 [Header("Login References")]

 [SerializeField]

 private TMP_InputField loginEmail;

 [SerializeField]

 private TMP_InputField loginPassword;

 [SerializeField]

 private TMP_Text loginOutputText;

 [Space(5f)]

 [Header("Register References")]

 [SerializeField]

 private TMP_InputField registerUsername;

 [SerializeField]

 private TMP_InputField registerEmail;

 [SerializeField]

 private TMP_InputField registerpassword;

 [SerializeField]

 private TMP_InputField registerConfirmPassword;

 [SerializeField]

 private TMP_Text registerOutputText;

 private void Awake(){

 DontDestroyOnLoad(gameObject);

 if (instance == null){

 instance = this;

 }

 else if (instance != this){

 Destroy(instance.GetHashCode);

 instance = this;

 }

66

 FirebaseApp.CheckAndFixDependenciesAsync().ContinueWith(checkDependancyTask =>{

 var dependencyStatus = checkDependancyTask.Result;

 if (dependencyStatus == DependencyStatus.Available){

 InitializeFirebase();

 }

 else{

 Debug.LogError($"Could not resolve all Firebase dependencies: {dependencyStatus}");

 }

 });

 }

 private void InitializeFirebase(){

 auth = FirebaseAuth.DefaultInstance;

 auth.StateChanged += AuthStateChanged;

 AuthStateChanged(this, null);

 }

 private void AuthStateChanged(object sender, System.EventArgs eventArgs){

 if (auth.CurrentUser != user){

 bool signedIn = user != auth.CurrentUser && auth.CurrentUser != null;

 if (!signedIn && user != null){

 Debug.Log("Signed out!");

 }

 user = auth.CurrentUser;

 if (signedIn){

 Debug.Log($"Signed in: {user.DiplayName}");

67

 }

 }

 }

 public void ClearOutputs(){

 loginOutputText.text = "";

 registerOutputText.text = "";

 }

 public void loginButton(){

 }

 public void registerButton(){

 }

 private IEnumerator LoginLogic(string _email, string _password){

 Credentials credentials = EmailAuthProvider.GetCredential(_email, _password);

 var loginTask = auth.SIgnInWIthCredentialAsync(credentials);

 yield return new WaitUntil(predicate: () => loginTask.IsCompleted);

 if (loginTask.Exception != null){

 FirebaseException firebaseException =

(FirebaseException)loginTask.Exception.GetBaseException();

 AuthError error = (AuthError)firebaseException.ErrorCode;

 string output = "Unknown Error, Please Try Again";

 swith (error){

68

 case AuthError.MissingEmail:

 output = "Please enter your email!";

 break;

 case AuthError.MissingPassword:

 output = "Please enter your password!";

 break;

 case AuthError.InvalidEmail:

 output = "invalid Email";

 break;

 case AuthError.WrongPassword:

 output = "Incorrect Password!";

 break;

 case AuthError.UserNotFound:

 output = "Account does not exist!";

 break;

 }

 loginOutputText.text = output;

 }

 else{

 if (user.IsEmailVerified){

 yield return new WaitForSeconds(1f);

 GameManager.instance.ChangeScene(1);

 }

 else{

 //Send verification email

 GameManager.instance.ChangeScene(1);

 }

 }

 }

69

 private IEnumerator RegisterLogic(string _username, string _email, string _password, string

_confirmPassword){

 if (_username == ""){

 registerOutputText.text = "Please enter a username";

 }

 else if (_password != _confirmPassword){

 registerOutputText.text = "Passwords do not match!";

 }

 else{

 var registerTask = auth.CreateUserWithEmailAndPasswordAsync(_email, _password);

 yield return new WaitUntil(predicate: () => registerTask.IsCompleted);

 if (registerTask.Exception != null){

 FirebaseException firebaseException =

(FirebaseException)registerTask.Exception.GetBaseException();

 AuthError error = (AuthError)firebaseException.ErrorCode;

 string output = "Unknown Error, Please Try Again";

 swith (error){

 case AuthError.InvalidEmail:

 output = "Email is invalid!";

 break;

 case AuthError.EmailAlreadyInUse:

 output = "Email is already in use!";

 break;

 case AuthError.WeakPassword:

 output = "Password is too weak";

 break;

 case AuthError.MissingEmail:

 output = "Please enter your email!";

 break;

70

 case AuthError.MissingPassword:

 output = "Please enter your password";

 break;

 }

 registerOutputText.text = output;

 }

 else{

 UserProfile profile = new UserProfile{

 DisplayName = _username,

 };

 var defaultUserTask = user.UpdateProfileAsync(profile);

 yield return new WaitUntil(predicate: () => defaultUserTask.IsCompleted);

 if (defaultUserTask).Exception != null){

 user.DeleteAsync();

 FirebaseException firebaseException =

(FirebaseException)defaultUserTask.Exception.GetBaseException();

 AuthError error = (AuthError)firebaseException.ErrorCode;

 string output = "Unknown Error, Please Try Again";

 swith (error){

 case AuthError.Cancelled:

 output = "Update User Cancelled!";

 break;

 case AuthError.SessionExpired:

 output = "Session has expired!";

 break;

 }

 registerOutputText.text = output;

71

 }

 else{

 Debug.Log($"Firebase User Created Succesfully: {user.DisplayName} ({user.UserID})");

 //Send verification email

 }

 }

 }

 }

}

GameManager

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

public class GameManager : MonoBehaviour{

 public static GameManager instance;

 public void Awake(){

 DontDestroyOnLoad(gameObject);

 if(instance == null){

 instance = this;

 }

 else if(instance != this){

 Destroy(gameObject);

 }

 }

 public void ChnageScene(int _sceneIndex){

72

 SceneManager.LoadSceneAsync(_sceneIndex);

 }

}

73

Firebase Errors

After importing the packet manager, we see that the Package conflicts with the Asset EDR. This can

be fixed by deleting the contents of the EDF as they are already in the Package.

Another error has been starting to spread among multiple scripts within the Menu Scene is that the

script cannot be loaded. This is a harder error to track as it does not show up in the console. There

are no compile errors, and the script is within the assets folder so there is no reason why the script

cannot be fetched.

Deleting the Meta files of the scripts and trying to reimport the scripts while also reloading the scene

does not seem to help.

I was also unable to find any fixes as the vague has no error code and can be due to many things on

Unity’s side of the processing.

I ended up downgrading the version of Unity to the oldest version of the program I can o while also

keeping the Package Manager feature, which is 2020.1.17f1. This also did not seem to do anything

significant.

Before, this error showed up as the filename and class name not matching which is also false. This

error seems to have no fix, leading to the ultimate decision of pausing the idea of Implementing

firebase in order to keep going with the rest of the development.

If I will have time later in the development stage, I will give firebase another change. I couldn’t find

other alternatives that would make as much sense as Firebase for a game. The other solution would

be to still use firebase but use the google authentication system instead of the email and password

combination, due to it being supported very well along side other unity games, especially on mobile.

74

Melee Combat Player

To make the combat system we need to give our player a new script that would simulate the tip of

the sword and the collider of the enemy. If these two points are overlapped

when the player makes their attack, then the enemy will take damage. This

can be simulated as the point having a radius and whatever enemies there

are within that circle will take a certain amount of damage.

This will give the effect along with the script and animator that the player

does damage to the enemy as long as the enemy is in front of the player and

within the attack range.

This is the combat game component of the player made up of the script itself. It’s main purpose is to

take the players input in this case being the LMB and cause damage to the enemy in two stages. The

swing animation happens regardless, only when he LMB is clicked. The enemy takes damage only

when they are within the range, or the circle drawn you can see in the scene view.

Another important aspect of the melee combat that needs to be regulate is how often the player can

choose to attack the enemy. Spamming the LMB would result in them doing more damage to the

enemy than it should be allowed, not even the animation could keep up and so the attack can only

be run if enough time has passed until the last attack. This would make the melee combat more

interesting to learn.

All of this is of course an ad on to the current player. The extra animation also changes the animator,

and adds another parameter, which is a trigger, called attack. This is activated only when the player

presses the LMB and it triggers the attack animation.

New Animator

The animator is similar what it used to be

before. The only thing it has changed is the

addition of the attack animation. Here I

added two types of animation, represented

by the LMB and the RMB.

The animations although very similar, as well

as the amount of damage done by each

attack.

These are also the

parameters used to trigger

all of the new animations.

75

Player Combat Script
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PlayerCombat : MonoBehaviour

{

 public Animator animator;

 public LayerMask enemyLayers;

 public Transform attackPoint;

 public float attackRange = 0.5f;

 public float attackRate = 2f;

 float nextattackTime = 0f;

 // Update is called once per frame

 void Update()

 {

 if (Time.time >= nextattackTime)

 {

 if (Input.GetKeyDown(KeyCode.Mouse0))

 {

 Attack1();

 nextattackTime = Time.time + 1f / attackRate;

 }

 if (Input.GetKeyDown(KeyCode.Mouse1))

 {

 Attack2();

76

 nextattackTime = Time.time + 1f / attackRate;

 }

 }

 }

 void Attack1()

 {

 animator.SetTrigger("Attack1");

 Collider2D[] hitEnemies = Physics2D.OverlapCircleAll(attackPoint.position, attackRange,

enemyLayers);

 foreach (Collider2D enemy in hitEnemies)

 {

 enemy.GetComponent<Enemy>().TakeDamage(20);

 }

 }

 void Attack2()

 {

 animator.SetTrigger("Attack2");

 }

 void OnDrawGizmosSelected()

 {

 if (attackPoint == null)

 return;

 Gizmos.DrawWireSphere(attackPoint.position, attackRange);

77

Enemy
In order to make our game somewhat fun, we need to give our main character someone to fight.

Creating the enemy is similar to the player in their core mechanics. They are a rendered sprite/idle

animation that has an animation controller, some other components for the physics of the character

and CS scripts that determine what they do.

Sprite Resource:

This is the basic idle state of the enemy/bandit. Rather than making all the

animations, I picked this character instead for a couple of reasons:

• He is almost the same pixel height and detail as the main character (They do

not look like they are from two completely different games)

• It already has enough animation done to him on the original sprite sheet.

• He appears to have the same body proportions as the player, and the same

rate of speed when it comes to movement (if the rate of change in the sprite is

the same between the two), as they have the same no of images to depict a run

animation, or a slash, etc.

Before adding the scripts, we have to set up his

Physics and Layer system

Firstly we see that he is on a different layer, in

order for the player and all Enemies to interact

naturally.

We also see the Rigidbody component, giving

our character the characteristic of a game

enemy.

The rotation in the Z axis is frozen so that the

game doesn’t show weird bugs, but also the

movement in the Y axis.

Giving our character the ability to jump is not a

necessity. That should be the players advantage

over the enemy. This is also much harder to

implement into the Enemy’s AI as jumping is

only useful in specific situations.

We also need the continuous colision detection

for later implementation of the melle combat.

78

Here we have the Capsule collider that outlines the

character. He also has the slippery material on the y axis,

if jumping will ever be implemented to the enemy

characters.

The animator takes care of the characters animation

controller. The animation is just as complex as the

players animation thus far.

We then have two scripts, the Enemy Follow, this script

makes the Enemy follow the player wherever he goes,

an the Enemy script that takes care of the enemys health

stats, along with their die function for when they’re

health reaches 0

We can also see the variables in those components. We

have max speed that the player can run at and current

speed which is down as movement.

We also have the range, so how far away the player has

to be for the enmy to stop. This is usually the attack

range which will later be implemented.

Aswell as linking the animator to both of these scripts in

order to change the animato parameters and change the

anmiation according to the enemies actions and health

stats.

Animator

These are all the animations we need for the enemy, along with the attack animation being an extra.

We see that idle is the default state, that can then transition to the run animation if the characters

speed is increased and vice versa.

The health bar will also be later implemented in order to visually show the enemies health going

down.

79

Enemy Follow Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class EnemyFollow : MonoBehaviour

{

 public float speed;

 public float range;

 private Transform target;

 public Animator animator;

 // Start is called before the first frame update

 void Start()

 {

 target = GameObject.FindGameObjectWithTag("Player").GetComponent<Transform>();

 }

 // Update is called once per frame

 void LateUpdate()

 {

 if (Vector2.Distance(transform.position, target.position) > range) {

 var targetPos = new Vector2(target.position.x, transform.position.y);

 transform.position = Vector2.MoveTowards(transform.position, target.position, speed *

Time.deltaTime);

 Move();

 }

 }

 void Move()

 {

80

 animator.SetFloat("Speed",speed);

 }

}

Enemy Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Enemy : MonoBehaviour

{

 public Animator animator;

 public int maxHealth = 100;

 public int currentHealth;

 public HealthBar healthBar;

 // Start is called before the first frame update

 void Start()

 {

 currentHealth = maxHealth;

 healthBar.SetMaxHealth(maxHealth);

 }

 public void TakeDamage(int damage)

 {

 currentHealth -= damage;

 healthBar.SetHealth(currentHealth);

 //Play hurt animation

 animator.SetTrigger("Hurt");

81

 if (currentHealth <= 0)

 {

 animator.SetTrigger("Hurt");

 Die();

 }

 }

 void Die()

 {

 //Die animation

 animator.SetBool("Death", true);

 animator.SetFloat("Speed", 0f);

 //Disable enemy

 GetComponent<Collider2D>().enabled = false;

 this.enabled = false;

 }

}

Sprite Sheet

This sprite sheet can be split into the

multiple animations and used on our Enemy

character to get the desire movement/

animation.

There are more than enough options on

animation allowing the integration of later

features such as a revive/recover animation,

more attacks and idle animations that can be

used later in order to make the game more

immersive and more fun to play.

The sprite sheet is very similar a the one

used for the main character.

82

Health Bar

This is another feature of the enemy character as each enemy has their health displayed

over the sprite as a health bar. This health bar is made up of a fill and a border that act as a

slider which we can control from within the script linking the players health and the health

bar.

This health bar also naturally always follows the enemy as it is part of the same parent

game object.

Not only that, but the health bar is on the UI layer and so it won’t affect other game

objects that are on the different layers.

Here we can see the components of the Health Bar

parent game object.

The child game objects, the fill and the border are

called in this game objects Slider component which

allows me to resize the fill to represent the health

going down.

This is changed by the Health Bar as the slider value is

made equal to the characters health, which is

calculated as the no of hits multiplied by the damage

per hit that the player does to the enemy.

Here we can see the

health bar of the enemy

going down as we do

more and more damage

to them, starting out at

green and turning to

yellow then red.

Health Bar Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

83

public class HealthBar : MonoBehaviour

{

 public Slider slider;

 public Gradient gradient;

 public Image fill;

 public void SetMaxHealth(int Health)

 {

 slider.maxValue = Health;

 slider.value = Health;

 fill.color = gradient.Evaluate(1f);

 }

 public void SetHealth(int Health)

 {

 slider.value = Health;

 fill.color = gradient.Evaluate(slider.normalizedValue);

 }

}

84

Evaluation
Testing of the program has been done mostly during the development process as Unity allows you to

run the program in game view and quickly test the new aspects you may have tried to implement.

This allows me to test during the development cycle and without telling unity to build my game

before I can run it. Gives a whole aspect of trial and error to the coding cycle, especially for some

small game object component settings that may give an error in the console.

These tests are mostly done to assure the client that the game is running the same as it was in the

game view of unity before it was built.

Testing

Log In System Tests

No. What is being tested? Input Expected Outcome Actual Data Pass/
Fail

1 As the game is opened
this is the First parent UI
game object that should
show up in the first
scene

N/A This menu should show up
first and should be
impossible to go past it
without registering or
logging in.

Pass

2 Do the fields for email,
password etc work?

Try and enter
some details.

The data entered should
remain within the field until
you chose to enter your
data.

Pass

3 Is your password
hidden, so all characters
appear as an ‘*’ instead

Enter some
details in the
password fields.

This should protect the users
password

Pass

4 Pressing the login
button should allow the
player to play the game

Input the
correct details

Once clicked with the correct
data, the game proceeds to
the game main menu

Switches to

Pass

85

Menu Tests

5 Entering the wrong
details would not allow
the player to proceed

Input the wrong
details

The game doesn’t proceed
and asks you to try again

Switches to

Fail

6 Making an account and
pressing the Register
button should allow you
to proceed.

Input new
details in the
register section

The data entered is then
taken to firebase and stored.

Nothing was
added to
firebase.
The email,
password,
etc. have
not been
added to
firebase and
cannot be
used to log
in.

Fail

7 Logging back into the
game with the new
details should allow you
to access the game

Input the new
details in the log
in section

The game should then take
you to the main menu giving
access to the rest of the
game.

Cannot happen as the accounts
have not been saved, also
switches to the game no matter
what details have been entered.

Fail

No. What is being tested? Input Expected Outcome Actual Data Pass/
Fail

1 Game should go to the
main menu after
loading, and displays it
to the user.

Run the
program

It does as specified.

Pass

2 The buttons should
darken when hovered
over them

Hover over all
the possible
main menu
buttons.

It does so, as well as going back
to the original colour.

The Play
button
here is
darker,
but it has
a level of
subtlety
due to
aesthetics.

Pass

86

3 The play button should
lead to the actual
gameplay scene when
clicked

Click the play
button

Does as expected, lead straight
to the gameplay with almost no
loading time

Switches to

Pass

4 The options button
should lead to the
option menu without
changing the scene.

Click the options
button

It does not change the scene, it
only deactivated the main
menu parent game object, and
activated the options menu.

Pass

5 The options menu
should have multiple
settings such as drop
down, sliders, etc.

Open options
menu

It has all those things, and they
are all easy to interact with by
the user. Opening some of the
settings

Pass

87

6 These settings also
change the game itself
so they should have an
effect on the game.

Change some
settings

I expect those changes to
actually apply to the game
when they are changed.

The settings do change the
actual game settings within the
build.

Pass

7 The player should then
be able to exit the
options menu by
clicking the back button.

Click the back
button from the
options menu.

Very similar to all the other
buttons, just smaller and once
clicked, it takes you back to the
main menu.

Switches to:

Pass

8 The user can access the
info menu from the
main menu.

Click on the info
menu

Once accessed, the user can
see a text message with some
details about the game

Pass

9 They can also use the
back button from the
Info menu to regain
access to the main
menu.

Click on the
back button.

The button should work in the
same way as the button that is
in the options menu.

Switches to:

Pass

10 The player can chose to
quit the game by
pressing the quit button
from the main menu.

Click the quit
button

Once clicked, this button will
close the game and brings the
user back to their home
desktop as the game is now
closed.

Quits the game without any
message, goes straight back to
desktop.

Pass

88

Gameplay Tests

No. What is being tested? Input Expected
Outcome

Actual Data Pass/
Fail

1 Does the world along with
the tiles, ground etc., show
up on screen

Play the game All the different tiles
show up on screen
just like the game
view

All of the expected
sprites and tiles are
loaded into the
game.

Pass

2 The enemy character on the
screen is in the idle
animation

N/A The enemy sprite
renderer animates
the enemy correctly

His idle
animation
mostly just a
shoulder
raises to
simulate

breathing.

Pass

3 The enemy starts running
towards the player as soon
as the game starts

N/A Does as expected,
also enemy stops
right in front of the
player, within the
attack range.

Here is the enemy
sprinting towards the
player, ready to fight.

Pass

4 The enemies health bar is
also rendered above the
enemy

N/A The health bar is full
and generated above
the enemy

The health bar appears
full in the beginning and
follows the enemy

Pass

5 The health bar also follows
the enemy everywhere the
enemy goes

N/A The health bar
follows the enemy
along x axis and stays
in the same y
coordinate

 Pass

6 The enemy plays the hurt
animation when the player
damages the enemy.

Swing at the
enemy.

The animation is
played followed again
by the idle animation.

Pass

89

7 The health bar is also
decreased by a specific
amount when health of
enemy is decreased.

Damage the
enemy

The health bar
decreases by 20 % of
full due to damage
dealt by the player.

Pass

8 Health bar changes colour
depending on the enemy’s
current health.

Damage the
enemy

The health bar will
change from green to
yellow to red as more
damage is dealt to
the enemy.

Pass

9 The enemy follows the
player around

Run away
from enemy

The enemy should
follow the player,
although being a bit
slower than the
player.

Pass

10 The enemy also dies once
its health reaches 0 or
bellow

Kill the enemy The enemy should fall
to the ground and
remain there

Pass

11 Is the main character on the
screen in the idle animation

N/A The sprite renderer
shows the character
as idle.

The
character
is in idle

animation, here are two slightly
different sprites that appear on after
another (the cape/scarf changes)

Pass

12 The character can move
across the given space.

A/D Pressing A/D would
result in the player
moving, as well as the
specific running
animation playing for
as long as the player
is running.

Pass

90

13 The player can jump W The player will be
going into the air and
drop back down while
the jump animation
plays.

The jumps
are small,
and the
character
quickly
comes back
on the
ground.

Pass

14 The player should also
appear to swing to the
enemy

LMB The player swings his
sword and damages
the enemy if in range

 Pass

91

Testing against Features of Solution

Requirements Explanation
A simple main menu that is intuitive and easy to use for
newcomers but also has enough settings for more
experienced players

This will allow both low and high skilled players to feel
right at home

This requirement has been met, the menus are simple and intuitive, as well as being fairly polished due to their
simplicity. The buttons do react to the player clicking and hovering over them so that the user can tell what is
happening more clearly.

The design scheme reflects the story and the main character
being the Grim Reaper.

This give the game some personality to be associated
with, e.g. Minecraft has a 3d square as a logo that
resembles dirt and grass.

The sprite of the main character has been changed due to requiring more animation that I struggle to make in pixel
art, although the original idea of having the game reflect the main character is still met as the enemy type has also
been changed to fit with the new main character. The games new icon can actually be the players shield as it is one of
the main pieces o the sprite.

The whole theme should be dark along with the writing in
the menus, backgrounds, sounds, etc.

This goes along nicely with the meaning and feeling of
the whole game, which is to be expected.

This has also been met, as the main menu and the whole game use darker sprites for the aesthetic. The background is
a dark blue to simulate the night sky, as well as having the other tiles being pixelated and yet have less vibrant
colours.

Most of the menu related requirements have been met mostly because they are simple and easy to

implement, as well as having so few. Unlike some of the other requirements relating the gameplay,

the menu was much simpler, and harder to improve upon. The only improvement that can be done

is add some sound as well as animation to the buttons making the menu much more alive than what

it currently is.

Requirement Explanation

The usual game setting that can be tampered with so
that every user can personalize their experience to a
certain extent. Includes controls, graphics, gameplay
etc.

This will allow higher skilled users to personalize their
experience the way they want it, but it is also good for
people with more special screen and so on to run the
game optimally.

Although though is done to a lesser extent than expected, it is integrated in the game as the changes made do
actually affect the game and its performance.

The game should also have a pause menu that allows
you to change some of the in-game settings and maybe
even a tip section for those that are lost and do not
know what to do

This will allow the users to personalize the game
experience but also stop their progress for a little break
if they so wish.

The pause menu is not integrated as I did not have enough time to do so in the development section and the need
to step away from menus. Making one would definitely improve my game, giving the user more freedom when it
comes to

The ability to change key binds would be a good thing
to add

This can mean that users can customize their
experience even more and could allow room for
connecting a controller later on.

Changing key binds is not a feature I have added to my game yet. My skill set is very limiting and so adding this to
my game is still a new concept to me and so I wasn’t able to do this in development.

92

A lot of those requirements have not been met due to either the lack of time spent in development

or the complexity of my initial idea along with my lack of skill when it comes to unity, and coding in

C#. This inexperience shows itself in the things that I am not yet able to implement.

The game is easy to run on almost any system because it is such a simple game. Making it run on

mobile phones would then be easy because of how easy it is to run. In order to uild the game for

these platforms, the modules have to be added, aswell a new input system, especially for the mobile

phones users.

A save button, although the game will save
automatically, having the option to do so manually can
prove to be beneficial and some people prefer it.

This will allow users to ensure that their progress is
saved after they are done playing for the day.

There is no progress to save and so making a save menu for no reason seems like a waste in time at this stage of
development and so this has not been done, although once the game will become more complex and the
progression system will be made up of more levels and such, a save system is necessary.

Having a cheat menu or just cheats to add some more
fun to the game.

After the user has finished the game, they can replay it
using cheats which might just make it more fun and
hilarious.

The game is not yet complex enough for a cheat menu to have any real use. The game is easy and there aren’t
many things the player can think of making easier for themselves. Once resources and more complexity has been
added, then a cheat menu would make sense.

Requirement Explanation

Standard computer peripherals: Computer with a keyboard
mouse and monitor.

The user needs basic peripherals in order to play
the game and to progress through it.

The game so far can only be played using a mouse and keyboard, although it can easily be made suitable for a
console controller, and even mobile phones, but it has not been integrated yet in the Input Manager system.

Preferably headphones or speakers for the sound effects,
although it shouldn’t affect the user performance a lot.

This is not a must, but it is recommended to get the
full game experience.

There are no game sounds implemented as that is a very new concept to me and my skill is too limited to be able
to integrate this efficiently in my game.

Minimum Computer Specs: (enough to run the software) The computer needs to be able to run the game.
Although not a lot of image processing is needed,
some still is.

The game is very easy to run, not only on my system but also other systems. It takes very little processing power
out of my computer to the point that leaving the game open is hard to tell, consuming no more than 3% of my
processing power, ensuring that other people with a lesser version of the i7-7700k can also run this game with
ease.

Windows, Mac or Linux operating systems In order to run the program and to store the data,
you need an operating system.

The game will only run on a Windows computer/laptop due to this being the only module I used to build the game
for, from unity.

93

Questionaire
Henry

The menu is very simple and easy to navigate. It feels like I have seen it before because it is so

similar to other games, most people expect for something like this to be the case.

The game play is nice with smooth animations, and the controls are extremely intuitive for me, and

even for beginners.

The games lacks a sense of progression which is why spending a lot of my time on this game seems

impossible as there is rarely a feeling of satisfaction when playing it.

The game has a lot to improve upon. It has an interesting concept but comes too short for me to be

replayable.

Danika

The menus are easy to navigate through, easy enough even for me.

The gameplay is lacking but I am a fan of the design style of the characters and the rest of the game.

Pixel art is new to me and I found it to be extremely underrated. I would love to see more games like

this.

The game play seems nice, although the progression is lacking. The characters seem somewhat real

in their interactivity and very responsive to my inputs.

For me, as a casual gamer, it is hard to spend time playing this game due to it’s lack of progression.

Andrea

The menu system is super easy to follow, although I do not like the dark theme the game menus

have. I personally prefer something more vibrant and animated.

The gameplay and animations blend well. The pixel art style is very appealing, aswell as having the

animations is this style give the game a sense of uniqueness I was never interested in before. This

game definitely made me a fan of pixel art.

There is no progression to the game so it very hard for me to invest time into the game and play it

more than maybe a few minutes, let alone streaming it which I don’t think would appeal at this

stage.

A lot of improvements can be made.

Conclusion: The focus seems to be the lack of progression. Focusing on this in later version would

seem to extract the most value out of the game, as it would attract more people. The idea of pixel

art seems to be appealing when put into a game.

The menu could also have some work done to it, but the main focus would be adding more

complexity to the game so that the players would invest more time into it.

94

Maintenance and Limitations
There are limitations to my game currently as I have not achieved my initial idea as development is

not finished. These are bugs, inconsistencies, things not included and improvements that can be

made and should be made to the original game.

Improvements:

• The log in menu system is not functional, and so making it functional would help a lot with

people being able to make an account in order to help the game, regulating people playing

the game but also saving progress.

• There is a story lacking as it has not been yet made using the tile system of making different

levels and a progress through different worlds. This can and should be implemented but it is

very time consuming which is why it has not been done in development.

• The enemy AI is very simple and basic. It does not even hit back on the player and so the

game is easy to win and progress through. Making the AI harder and adding multiple types

of enemies that have different attacks would make the game more challenging as it builds a

learning curve as otherwise the game cannot progress, and the player will struggle unless

they learn.

• Because there is not much of a progression through the game, there is nothing to save so

there is also the lack of a save system. Adding more complexity to the current game would

be the first step, and then make a saving system in order to ensure that the user can pick up

from where they’ve left off.

• The level is also basic. Adding more objects from the asset pack could make it seem much

more alive and interesting.

• Adding a combat system to the enemy so that the player has more of a challenge while

fighting. The addition of a learning curve to the game would make the game more

challenging and so players would invest more time trying to learn the game.

Complexity:

• Add the special ability to the main character, and the cooldown system.

• Allow the player to block enemies’ attacks with their shield as well as having the ability to

roll.

• Add some other platformer aspects, such as sliding down walls.

• Give the user an inventory menu and different resource management that the player can

collect from the different levels.

• Add more effects using the particle system.

• Add the log in system using firebase.

Bugs:

• One of the first bugs is that the enemy when it runs towards the player, it jitters. It is very

subtle, but the movement is not as fluid as I would like it to be. Once the Enemy might get a

more improve AI, even using a path finder instead of a simple follow script, this issue could

be fixed.

• Another bug is that even though the player appears to be on the floor and should not affect

the player, it still follows the player around. In the die() function the follow script is

deactivated but for some reason the enemy still follows the player. This can also be fixed

after the new AI would be integrated.

• While the game is in windowed mode, changing the resolution of the game, changes the

actual size of the window to fit those pixel sizes. This does not happen in full screen

95

however, which is what I expect most of the players to be using but it is still an issue that

needs fixing.

• Less of a bug but should be fixed is that the enemy health bar still appears after the enemy

has died which is fine but will not look good after more enemies are added to the game.

• The sprites used for the health bars look glitchy. Maybe due to the drop in or change in size

but they do not fit the rest of the game that looks clean in the pixel art style.

• Spamming the W key for jump makes the animation glitch as the players animation shows

the player to keep going up although that is not the case.

96

